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Abstract. The selective protection of the S-(+)-enantiomer of the Wieland Miescher ketone (2) as the tert- 
l-protected cyanohydrin 7 and the oxidative cleavage of an a-keto18 that was derived 
a model 10 for the A ring of the tax01 (1) possessing the correct C-l stereochemistry of 
nalii suitable for further elaboration. 

The need to devise a synthesis’ of taxol(1) in homochiral form and the presence of two “masked 

&2-methylcyclohexanol subunits (emboldened lines in structure below) suggested that the A and C rings 

of tax01 could be derived from the S-(+)-enantiomer of the Wieland-Miescher ketone (2). Several studies2 

recognized the Wieland-Miescher ketone as a potential source of the cis-2-methyl-cyclohexanol subunit of 

ring C. In our retroe@&, both the A and C riqs dartved tram the S-(+)-enantiamar of the wlalarxl- 

Miescher ketone (2), and we report a synthesis of a model for the A ring of 1 that addresses the problem 

of intra$&nptieE> 8rereDceryler’)n> *h corter?~ riuscZ3lhe &e~er&herri&y i’lhe om& Wihe 

synthssis. 
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The Hajos-Parrish procedure3 using L-proline provided the S-(+)-enantiomer of the Wieland- 

Miescher ketone (2) in high enantiomeric purity (99%). The addition of a “hydroxymethyl” nucleophile, 

such 6as so&urn Gmefr@suixori~um meIth‘lbe,‘ths I3rgtgnarrf refqeti Dt Slm&@aqorrpnqv&~mafb~ 

chlorides or trialkylsilyl cyanides,6 to the C-5 carbonyl group of 2 without proten of the conjugated 

carbonyl group at C-2 failed to exhibit the desired level of selectivity, As shown in Scheme 1, the 
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protection of the C-2 catbonyl group as the diihioketal3, and the addiiion of sodium dialkylsulfoxonium 

methide delivered the desired spiroepoxide 3 in 87% yield. However, the further conversion of the 

spiroepoxide 4 to the spiroketal5, proceeded in only modest yield. 

Scheme 1. 

. a, (1) HSCHzCH&H, p-TsOH, HOAc (99%); (2), [Me?S(O)=CH2]Na (87%); b, TI(NO+, aq. 
MeOH, THF (85%); c, TiClr, acetone, CHsC(OCHa)=CH2 or BF&EtzO, acetone (1838%). 

The limited success of the approaches designed to add a “hydmxymethyl” nudeophile to 2 led to 

the utilization of a trfalkylsiiyf-protected cyanohydrln because it offered the best combination of stability 

toward various reagents needed elsewhere in the route and convertibility to the C-l a-hydroxyaldehyde 

that we will require. As shown in Scheme 2, protection of 2 as the dithioketal and the addition of tert- 

butyldimethylsilyl cyanide (TBDMSCN) led to the protected cyanohydrin 8 in 88% yield in which the ratio of 

the desired C-l epimer 8 to the undesired epimer was 10.1 to 1. Although there are a few reports of the 

addition of tert-butyldimethylsilyl cyanide to hindered ketones6 the zinc iodie-catalyzed addition of this 

reagent as well as the addition of a new reagent, teMutyldiphenylsflyl cyanide,’ to substituted 

cyclohexanones proceeded in good yield (Table 1). The stereochemical issue with respect to the C-l 

center in the principal diastereomer 8 was settled unambiguously by X-ray crystallography. Deprotection 

of 8 with thallium nitrate furnished the protected Wieland-Miescher ketone 7 in high yield. . 

In order to rupture the bicyclic ring system of the Wieland-Miescher ketone, we investigated the 

cleavage of unsaturated a-ketols (Table 2). As shown in Table 2, periodate was the most effective 

reagent of those examined for the cleavage of unsaturated a-ketols. A Pb(OAc), oxidation0 of 7 furnished 

the a’-acetoxyenone and saponification provided the unsaturated a-ketol8. Cleavage of 8 and treatment 

with diazomethahe afforded the aldehyde 9, and decarbonylationlo with Wilkinson’s reagent afforded the 

’ desired a&unsaturated ester 10. In summary, the Weland-Miescher ketone 2 may provide a suitable 
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Tabfe 1. The Addiiion of TBDMSCN and TBDPSCN to Substiiuted Cyclohexanones. 

Cyclohexanone TBDMS-cyanohydtfn TBDPS-cyanohydrin 
yield (oondiiions) yield (oondiiions) 

92% (B, 8h. 1.5 eq) 

94% (A, 2h, 1.3 eq) no reaction (A, 14h, 1 .S eq) 
92% (B, 8h, 1.5 eq) 

83% (A, 20h, 1.3 eq) no reaction (A, 24h, 2 eq) 

92% (A, 4d. 1.5 eq) 85% (B. 8d, 2 eq) 

Prooedure A: TSDMSCN or TBDPSCN (equiv), Znh (ca 0.03 equiv), CHEl2,25C; 
Procedure B: TBDMSCN or TBDPSCN (equiv), Znl2 (0.23 equiv), CHzCl2,25% 

Table 2. Cleavage Reactions of Saturated and Unsaturated a-Ketols. 

a-Ketol Nal04 NaBiO3 Pb(OAQ MnO2 

OH 

OH 

OH 

81% 72% 5% 0% 

84% 0% 0% _- 

70% 20% 80% -- 

80% 0% 10% -- 
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platform from which to elaborate the A ring of taxol (1) and progress toward the introduction of the 

remaining A ring functionality and the elaboration of the B ring will be reported in due couwe. 

Scheme 2. 

&R: L ~02!.Mz$~ 
1suMe2siO MuMepSiO 2 * 

10 9 6 

a, (1) HSCHzCHsH, p-TsOH, HOAc, 25oc, (2), TBSCN, Znlz, CH2Cl2 (66% overall); b, Tl(NO+, aq. 
MsOH, CHCl3, THF (90%); c, Pb(OAc)4 (3 equiv), benzene, 66 h, reflux (65%) d, K2coa (0.13 equiv), 
MeOH (65%); 8, Nal04, aq. t-BuOH; f, CH2N2 (75% overall for 8, f); g, RhCI(PPh3)3 (1 equiv), CsHs, 6ooC 
(70%). 
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