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AN ENANTIOSELECTIVE APPROACH TO RING A OF TAXOL
USING THE WIELAND-MIESCHER KETONE
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The selective protection of the S-(+)-enantiomer of the Wieland Miescher ketone (2) as the tert-
butyldimethyisilyl-protected cyanohydrin 7 and the oxidative cleavage of an a-ketol 8 that was derived
from 7 prov:deci a model 10 for the A ring of the taxol (1) possessing the correct C-1 stereochemistry of
taxol and functionality suitable for further elaboration.

The need to devise a synthesis! of taxol (1) in homochiral form and the presence of two "masked”
cis-2-methylcyclohexanol subunits (emboldened lines in structure below) suggested that the A and C rings
of taxol could be derived from the S-(+)-enantiomer of the Wieland-Miescher ketone (2). Several studies?
recognized the Wieland-Miescher ketone as a potential source of the cis-2-methyl-cyclohexanol subunit of
ring C. In qur retrqanalysis, both the A and C rings derived fram the S-(+)-anantiamar of the Wieland-
Miescher ketone (2), and we report a synthesis of a model for the A ring of 1 that addresses the problem
of introbuomp ine T-H S1ereocemerin™ wiin coes: ApsHe SIETBDENBMISITY 21'ihe puIss! oYine

synthesis.

The Hajos-Parrish procedure? using L-proline provided the S-(+)-enantiomer of the Wieland-
Miescher ketone (2) in high enantiomeric purity (99%). The addition of a "hydroxymsethyl* nucleophile,
such @s sotium dmenyisutoxomum melioe. ne Bagnan reagent of Smatylisopmpoxvsimaing
chlorides or trialkylsilyl cyanides,® to the C-5 carbonyl group of 2 without protection of the conjugated
carbony! group at C-2 failed 1o exhibit the desired Jevel ot selectivily. As shown in Scheme 1, the

55



56

protection of the C-2 carbonyl group as the dithioketal 3, and the addition of sodium dialkylsulfoxonium
methide delivered the desired spiroepoxide 3 in 87% yield. However, the further conversion of the
spiroepoxide 4 to the spiroketal 5, proceeded in only modest yield.

Scheme 1.

- @, (1) HSCH2CH2SH, p-TsOH, HOAc (90%); (2), [Me2S(0)=CHz]Na (87%); b, TI(NO3), aq.
MeOH, THF (65%); ¢, TiCls, acetone, CHsC(OCH3)=CHz or BF3.Et20, acetone (15-30%).

The limited success of the approaches designed to add a "hydroxymethyl” nucleophile to 2 led to
the utilization of a trialkyisilyl-protected cyanohydrin because it offered the best combination of stability
toward various reagents needed elsewhere in the route and convertibility to the C-1 a-hydroxyaldehyde
that we will require. As shown in Scheme 2, protection of 2 as the dithioketal and the addition of tert-
butyldimethyisilyl cyanide (TBDMSCN) led to the protected cyanchydrin 6 in 86% yield in which the ratio of
the desired C-1 epimer 6 to the undesired epimer was 10.1 to 1. Although there are a few reports of the
addition of tert-butyidimethylsilyl cyanide to hindered ketones® the zinc iodide-catalyzed addition of this
reagent as well as the addition of a new reagent, tert-butyldiphenyisilyl cyanide,? to substituted
cyclohexanones proceeded in good yield (Table 1). The stereochemical issue with respect to the C-1
center in the principal diastereomer 6 was settied unambiguously by X-ray crystallography. Deprotection
of 6 with thallium nitrate furnished the protected Wisland-Miescher ketone 7 in high yield.

In order to rupture the bicyclic ring system of the Wieland-Miescher ketone, we investigated the
cleavage of unsaturated a-ketols (Table 2). As shown in Table 2, periodate® was the most effective
reagent of those examined for the cleavage of unsaturated a-ketols. A Pb(OAc), oxidation® of 7 furnished
the ar-acetoxyenone and saponification provided the unsaturated a-ketol 8. Cleavage of 8 and treatment
with diazomethane afforded the aldehyde 9, and decarbonylation'® with Wilkinson's reagent afforded the
desired a,B-unsaturated ester 10. In summary, the Wieland-Miescher ketone 2 may provide a suitable
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Table 1. The Addition of TBDMSCN and TBDPSCN to Substituted Cyclohexanones.

Cyclohexanone TBDMS-cyanohydrin
yield (conditions)

TBDPS-cyanohydrin
yield (conditions)

94% (A, 2h, 1.3 eq)

83% (A, 20h, 1.3 eq)

92% (A, 4d, 1.5 eq)

R

92% (B, 8h, 1.5 eq)

no reaction (A, 14h, 1.5 eq)
92% (B, 8h, 1.5 eq)

no reaction (A, 24h, 2 eq)

85% (B, 6d, 2 eq)

Procedure A: TBDMSCN or TBDPSCN (equiv), Znl2 (ca. 0.03 equiv), CHzClz, 25°C;
Procedure B: TBDMSCN or TBDPSCN (equiv), Znl2 (0.23 equiv), CHzClz, 25°C.

Table 2. Cleavage Reactions of Saturated and Unsaturated o-Ketols.

o-Ketol NalO4  NaBiO3

Pb(OAc)s MnO2

o
Cﬁ 81% 72%
OH
o
\(I 84% 0%
o

H
o .
\Q 70% 20%
OH
OCHg

HO,,
60% 0%

o)

5% 0%

0% --

60% --

10% -
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platform from which to elaborate the A ring of taxol (1) and progress toward the introduction of the
remaining A ring functionality and the elaboration of the B ring will be reported in due course.

Q8 5{,

Scheme 2.

lBuMeZS|O tBuMeZS|O
c.d * o
CO,Me CO,Me OH
"CN < "NeN - “ICN
tBuMezs|0 tBUMstIO tBUMGzSIO
10 8

a, (1) HSCH2CH2SH, p-TsOH, HOAc, 25°C, (2), TBSCN, Znlz, CH2Cl2 (86% overall); b, TI(NOs)2, aq.
MeOH, CHCIs, THF (80%); ¢, Pb(OAc)4 (3 equiv), benzene, 68 h, reflux (85%) d, K2COs (0.13 equiv),
MeOH (85%); e, NalOs, aq. t-BuOH; f, CHzN2z (75% overall for e, f); g, RhCI(PPhs)a (1 equiv), CeHe, 80°C
(70%).
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